Thoughtful Machine Learning

Thoughtful Machine Learning

Apply a fully test-driven approach to machine-learning algorithms, and save yourself the pain of missing mistakes in your analyses. Most data scientists have run an analysis and simply accepted any answer that wasn't an error message. But just because it runs doesn't mean it's correct. Missed mistakes can ruin research and harm reputations. All of that can be avoided by writing tests and building checks into your work. This book shows you how to write tests and build checks into their work. Using the Ruby programming language, software developers, business analysts, and CTOs will learn how to test machine-learning code, and understand what's happening "behind the scenes."* Code machine-learning algorithms in a test-driven way* Gain confidence to utilize machine learning* Dissect algorithms from the granular pieces using unit tests* Get real-world examples of utilizing machine learning code
Al momento non disponibile, ordinabile in 3 settimane circa

Dettagli Libro

Libri che ti potrebbero interessare

Dracula. Mito e realtà
Dracula. Mito e realtà

Nicola Balossi Restelli
Saggi critici
Saggi critici

Roland Barthes, M. Di Leo, L. Lonzi, S. Volpe, G. Marrone
Sondaggi sul Novecento
Sondaggi sul Novecento

Andrea Battistini
Scrivere di sé
Scrivere di sé

Paola M. Bellini
Opere complete. 5.Scritti 1932-33
Opere complete. 5.Scritti 1932-33

Walter Benjamin, E. Ganni
Opere complete. 6.Scritti 1934-1937
Opere complete. 6.Scritti 1934-1937

Walter Benjamin, Rolf Tiedemann, Hermann Schweppenhauser